Dimension of Certain Kernel Spaces of Linear Operators
نویسنده
چکیده
Let G be a semigroup of linear operators on a vector space S into itself with the operation of composition. A subset of G may be associated with a matroid X . We discuss the dimension of the kernels of certain linear operators induced in a natural way by the matroid structure on X .
منابع مشابه
Compact composition operators on certain analytic Lipschitz spaces
We investigate compact composition operators on ceratin Lipschitzspaces of analytic functions on the closed unit disc of the plane.Our approach also leads to some results about compositionoperators on Zygmund type spaces.
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملA comparative study of fuzzy norms of linear operators on a fuzzy normed linear spaces
In the present paper, we rst modify the concepts of weakly fuzzy boundedness, strongly fuzzy boundedness, fuzzy continuity, strongly fuzzy continuity and weakly fuzzy continuity. Then, we try to nd some relations by making a comparative study of the fuzzy norms of linear operators.
متن کاملFisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1991